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Shock Waves for a Discrete Velocity Gas Mixture
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We introduce three new models for a binary mixture which have only 6+5,
8+5, and 12+5 velocities and study the properties of the first two. The models
are plane and have five conservation laws as expected for a binary mixture in
the plane case. We look for exact solutions corresponding to traveling waves,
which turn out to have the properties of a structured shock wave, and study
their properties. Particular attention is paid to the overshoots in the profiles of
internal energy for the mixture and the two components.
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1. INTRODUCTION

Recently Bobylev and Cercignani(1) introduced a general approach to the
problem of constructing discrete velocity models (DVM) for mixtures.
They also gave two explicit examples of (plane) discrete velocity models for
binary mixtures having 8+5 and 9+16 velocities. The first of these
models, which was considered not satisfactory in ref. 1, actually turns out
to have spurious conservation laws.

The aim of this paper is twofold. We first introduce a new class of
models for a binary mixture which have only 6+5, 8+5, 12+5 velocities
and, for brevity, study the properties of only the two first ones. The models
are plane and turn out to have exactly 5 conservation laws as expected for
a binary mixture in the plane case.

We look at the Rankine�Hugoniot properties and later we determine
exact solutions corresponding to traveling waves, following an approach
introduced and used by one of us(2) in the case of DVM for a single gas.
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The properties exhibited by the solutions are studied in some detail with a
particular attention to the overshoots in the profiles of internal energy for
the mixture and the two components. For the possible overshoots of the
mixture, taking into account only the upstream and downstream asymp-
totic states, we establish a criterion which generalizes a similar criterion(3)

for a single gas.

2. THE NEW 11v i PLANAR MODEL

We would like to retain, for the discrete models, some properties of
the continuous theory, consider only binary collisions as in ref. 1 and dif-
ferent discrete velocities (for instance we avoid two particles at rest). For
planar models we want five physical conservation laws (no more, no less):
two for each component's momentum conservation, two for the mass con-
servation of the species and only one for the mixture energy conservation.
This means that we avoid(4) either extended kinetic models without conser-
vation laws or generalized Broadwell models with one less conservation. It
can happen that models have only five conservations but some of them are
``ambiguous.'' For instance, for one-speed species the mass and energy
conservations are equivalent, then the mixture energy conservation can be
considered (contrary to the continuous theory) as a sum of energy conser-
vations for the two species. Consequently we retain different speeds for the
two models. However, as discussed in ref. 1 and suggested in the book by
Monaco and Preziosi, (4) this is not sufficient if the models do not allow
exchange of energy between the species. So let us consider different speeds,
with exchange of energy between the two species. For instance, let us con-
sider a mixed collision with one rest particle in the loss term; then the
energy of the other particle will be different from the energies of the two
particles in the gain term. Is it sufficient now? Unfortunately not. We can
find such models but with ``spurious'' conservations (more than five conser-
vation relations), An example was the 13vi model of ref. 1 but we have
found many others. For some of them the ``spurious'' conservations disap-
pear (for instance the 13vi of ref. 1) with multiple collisions but not for all.
Looking at the defects we observe that some collisions are missing. For
instance for the set of light (or heavy) particles, it can happen that there
exists a subset where in both loss and gain terms, one of the particles of
the subset is always present. A simple but incomplete practical test, for
``spurious collision invariants,'' is to look for solutions symmetrical with
respect to one axis, even different from the coordinate axis. We can control
whether the number of collision terms is not less than the number of inde-
pendent densities minus the number of physical conservation relations. At
the end of this section we will present a more powerful method.
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For a binary mixture we denote by M the ratio between mass of the
molecules of the heavy species and that of the molecules of the light ones.
In Fig. 1 we present three models without ``ambiguous'' or ``spurious'' con-
servations, 6+5 velocities with any integer value for M and generaliza-
tions: 8+5 for M=5 and 12+5 (not studied here) for M=2. For the 11vi

model of Fig. 1 there are 6 different momenta for the molecules of the light
species: (\1, 0) (\1, \2(M&1)&1�2) and 5 for the molecules of the heavy
species: (0, 0), (\2, \2(M&1)&1�2). We denote by F0 the density of the
molecules of the heavy species with zero momentum, by (F1 , F2), (F3 , F4),
the densities corresponding to the velocities (\2�M, 2(M&1)&1�2�M ),
(�2�M, &2(M&1)&1�2�M ) respectively and for the densities of the light
species corresponding to (\1, 0), (\1, 2(M&1)&1�2), (�1, &2(M&1)&1�2)
by f1 , f2 , f3 , f4 , f5 , f6 , respectively. These 11vi models are physical for any
M>1: integer, rational or non rational, as illustration in Fig. 1 we choose
the two M=2, 5 values. For the M=5, 13vi model of Fig. 1, we add two

Fig. 1. Generalized 11vi Models with F0 for the particle at rest. First the 11vi valid for M>1
and presented for M=2 and 5, second the 13vi with M=5 and finally the 17vi with M=2.
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densities f7 , f8 of the light species corresponding to (0, \1). For the M=2,
17vi model, which is symmetric with respect to an exchange between the
x-axis and the y-axis, to the previous f7 , f8 we add four densities f9 , f10 ,
f11 , f12 of the light species corresponding to velocities (\2, \1).

We have also found for M=2, with properties similar to the present
ones, three other 11vi , (5+6), 13vi , (5+8), and 17vi , (5+12) models (not
studied here). For the 11vi , M=2 models the five and six velocities
associated to the light fi and heavy Fi densities are respectively (0, 0),
(\1, \1) and (\1�2, 0), (\1, \1�2). For the 13vi , M=2 models we add
two Fi with velocities (0, \1�2). Finally for the symmetric 17vi , M=2
model, we add (to the 13vi ) four heavy F i densities with velocities
(\1�2, \1).

In the sequel of Section 1 we give properties for solutions in the plane
while solutions depending on just one coordinate are treated in the other
sections. The light molecules collide with each other (1, 4) W (2, 3),
(1, 6) W (5, 2) and (3, 6) W (4, 5), with the heavy ones ((3, 0) W (2, 1),
((4, 0) W (1, 2), (4, 3) W (6, 1), (5, 2) W (3, 4), (5, 1) W (1, 3) and (6, 2) W
(4, 4), while the heavy molecules collide among themselves (1, 4) W (2, 3).
We introduce the following notation

li=�t fi+vi } �x fi , Li =�t Fi +vi } �xFi (2.1)

where fi and Fi denote the densities corresponding to light and heavy par-
ticles. Let us denote by \4i (i=1, 2, 3), \0, \1i (i=1, 2, 3, 4) the typi-
cal collision terms. We find twelve collision terms defined by:

41=a( f3 f2& f4 f1), 42=a( f5 f2& f6 f1), 43=a� ( f3 f6& f4 f5)

0=b(F1F4 &F2F3 ), 11=c(F0 f3&F1 f2), 12=c(F0 f4&F2 f1)

13=c(F0 f5&F3 f2), 14=c(F0 f6&F4 f1), 15=c� (F3 f4&F1 f6)

16=c� (F4 f3&F2 f5), 17=c� (F3 f3&F1 f5), 18=c� (F4 f4&F2 f6)

(2.2)

For hard-spheres models a and a� are connected.(5) Throughout the follow-
ing, for any Zi , zi quantities we define

Z\
i, j=Zi\Zj , z\

i, j=zi\zj

Zi, j } } } p=Zi+Zj+ } } } Zp , z i, j } } } p=zi+zj+ } } } zp
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and the evolution equations read as follows:

L0 =&11, 2, 3, 4 , L1 =&0+11, 5, 7 , L2 =0+12, 6, 8

L3 =0+13&1+
5, 7 , L4 =&0+14 &1+

6, 8
(2.3)

l1=4+
1, 2+1+

2, 4 , l2=&4+
1, 2+1+

1, 3 , l3=&4+
1, 3&11, 6, 7

l4=4+
1, 3&12, 5, 8 , l5=&4&

2, 3&13+1+
6, 7 , l6=4&

2, 3&14+1+
5, 8

There are several conservation relations; 5 of them are independent as
appropriate for a plane model for a binary mixture. We start (proof given
in Appendix 0, Theorem 1) with three sets: either only for the light species
[li] or for the heavy [Li] and finally for the [li , Li] except Lo . In each
case, with linear combinations of the li , Li and li , Li , we eliminate suc-
cessively the associated collision terms. In the two first cases we find only
one linear combination vanishing and interpreted as the only conservation
laws of mass (or number of particles) for the two species: light and heavy.

Ml=:
6

1

li=0, Mh=:
4

0

L i =0 (2.4)

In the last case (see Theorem 1), we find three vanishing linear combina-
tions of the li , Li which can be combined (with Ml=0) to give the two
components of the momentum conservation and the energy conservation
equations:

Jx=2(L+
1, 3&L+

2, 4)+l1, 3, 5&l2, 4, 6=0, Jy &L+
1, 2&L+

3, 4+l+
3, 4&l+

5, 6=0

2E=(4�(M&1)) \:
4

1

Li +:
6

3

li++:
6

1

li=0 (2.5)

This method is powerful, for instance it can be applied to prove that the
13vi , 17vi models of Fig. 1 are without spurious invariants. A simplification
can occur using a ``minimal number of collisions.'' For the proof of
Theorem 1, instead of the 12 collisions, we can retain only 1i , i=1,..., 4,
16 , 4 i , i=1, 2. When, with only binary collisions, spurious invariants exist,
we can see the missing collisions and the geometrical defect of,the model.
For instance this has been done (not presented here), with a ``minimal
number of collisions'' for the 13vi and the 25vi , M=2, 5 models of ref. 1,
proving that only the 25vi M=2 model is without spurious invariants.

A defect of the model, that we call semi-symmetric, is that it is not
symmetric with respect to an exchange between the x- and the y-axis. The
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equilibrium solutions will be studied in the next sections for solutions along
the x or y axis, here we write only the relations when the right hand sides
of the evolution equation vanish:

1+
1, 3=1+

2, 4=4+
1, 2=11, 2, 5, 6, 7, 8=0, 4+

1, 3=12, 5, 8 , 0=11, 5, 7

(2.6)

3. EQUILIBRIUM STATES FOR SOLUTIONS ALONG ONE
COORDINATE AXIS

We restrict our study (at equilibrium all 1i=4j=0 vanish) to the
two simple cases of shock waves along one coordinate-axis. First for solu-
tions along the x-axis, the usual assumption for the Fi , fi (independent of
the y coordinate) which are symmetric with respect to the x-axis, is that
they are equal, leading to new relations between the collision terms:

F3 =F1 , F4 =F2 , f5= f3 , f6= f4 (3.1)

13=11 , 14=12 , 42=41 , 0=43=0=15=16=17=18 (3.2)

Substituting (3.2) into (2.6) we get 41=11=12=0 and all collision terms
vanish at equilibrium. Second, for solutions along the y-axis, we assume
that the F i , fi (independent of the x coordinate) which are symmetric with
respect to the y-axis, are equal, leading to new relations:

F2 =F1 , F4 =F3 , f2= f1 , f4= f3 , f6= f5
(3.3)

12=11 , 14=13 , 15=16=17=18 , 0=42=41=43=0

We substitute (3.3) into (2.6) and get for the nonzero equilibrium terms

1+
1, 3=0, 11+215=0 (3.4)

but this simple argument, which does not exploit the structure of the
collision terms, is not enough to conclude that the terms 1j are zero. We
can reach the conclusion that all the 1j=0 by exploiting the circumstance
that the terms 1+

1, 3=11+215=0 that we rewrite, defining c~ =c� �c>0:

F0 =&2c~ F3 +F1 ( f1+2c~ f5)� f3= f1 F +
1, 3 � f +

3, 5
(3.5)

[2c~ f +
3, 5+ f1][F3 f3&F1 f5]=0

If the first factor vanishes then, due to positivity, f1= f3= f5=0 leading to
11=15=0. If the second factor vanishes then 15=0, leading to 11=0. In
both cases all collision terms vanish at equilibrium.
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4. ONE-DIMENSIONAL SOLUTIONS ALONG THE x-AXIS

For solutions depending on just time t and the space coordinate x we
have the obvious symmetry with respect to the x-axis, just 7 unknown
densities with the (3.1)-(3.2) conditions and the following equations hold:

l1=241+212 , l2=&241+211 , l3=&41&11 , l4=41&12

L0 =&211&212 , L1 =11 , L2 =12 (4.1)

As a consequence, we have just 7 equations to solve. There are now 4
conservation equations because the momentum conservation equation
along the y-axis is trivially satisfied. They are:

l+
1, 2+2l+

3, 4=0, L0 +2L+
1, 2=0

(4.2)
L+

1, 2+l+
3, 4=0, 2L&

1, 2+l1+2l3=0

or suitable linear combinations of them.
For a parametric representation of equilibria we introduce as a first

parameter * the ratio between f2 and f1 and as a second _ the ratio
between f3 and f1 . From the vanishing of the collision terms 41 , 11 , 12 we
can assign arbitrarily f1 and F0 , as well as the two parameters * and _, to
obtain:

f2=*f1 , f3=_f1 , f4=*_f1 , F1 =(_�*) F0 , F2 =*_F0 (4.3)

5. THE RANKINE�HUGONIOT CONDITIONS

For a shock-like solution to exist, the upstream and downstream
values must satisfy the conditions which arise from the conservation equa-
tions, which are known as the Rankine�Hugoniot conditions in both the
theory of continuous media and the theory of shock wave structure in the
kinetic theory of gases with a continuous set of velocities. Here something
similar must occur, with an important difference. Usually one chooses a
reference system in which the shock is steady. This is not possible, in
general, for a discrete velocity gas, because Galilei invariance does not hold
and the kinetic equations hold in a preferred reference frame.

Thus we look for solutions which depend on z=x&!t, where ! is a
parameter having the physical meaning of the speed of propagation of the
shock. We denote by qi (qi , respectively) the relative velocity vi&! (vi &!,
respectively), where vi (vi , respectively) is now the component of the i th
(ith, respectively) molecular velocity along the x-axis. The conservation
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equations then give, if we denote the upstream and downstream values of
fi and F i by ai , Ai and ci , Ci , respectively:

q1 a1+q2a2+2q3a3+2q4 a4=q1c1+q2 c2+2q3c3+2q4c4=K1

q0 A0 +2q1A1 +2q2A2 =q0 C0 +2q1C1 +2q2 C2 =K2
(5.1)

q1 A1 +q2A2 +q3a3+q4a4=q1C1 +q2C2 +q3c3+q4c4=K3

2q1A1 &2q2A2 +q1a1+2q3a3=2q1 C1 &2q2 C2 +q1c1+2q3c3=K4

where Kk (k=1, 2, 3, 4) are four constants. We have found four relations
which permit to relate the, upstream values of seven quantities to the
downstream values of the same quantities. Since the upstream and the
downstream values are equilibrium states, we can express both sets of
values in terms of four parameters each, according to the relations found
at the end of the previous section. Thus we can express, in principle, these
parameters on one side in terms of the parameters on the other side, or,
equivalently, in terms of the constants Kk . There is still a hidden param-
eter, !.

We introduce the differences bi=ci&ai , Bi =Ci &Ai , define !\M=
!\2�M and, with the explicit values of the discrete velocities, obtain:

!B0 +2(B1 !+M+B2!&M)=(!&1)(b1+2b3)+2(B1 !+M&B2 !&M)=0

(!&1) b1+(!+1) b2+!B0 =(!&1) b3+(!+1) b4&!B0 �2=0

(5.2)

In Appendix 1 we first rewrite (5.2) in terms, of (Aj , ai ), (Cj , ci ), calling
(A) and (C) the associate states. In Appendix 11, in agreement with the
representation given at the end of Section 4 we rewrite the four relations
in terms of ! and (A): *a , _a , a1 , A0 , (C): *c , _c , c1 , C0 . We find two
expressions for the ratio C0 �c1 from which ! is root of a polynomial with
the asymptotic states parameters *a , _a , *c , _c . It is useful to check whether
well known properties of the Rankine�Hugoniot polynomial for single gas
can be extended to mixtures. A very important property is that |!| is
bounded, from positivity constraints, by the smallest modulus of the
discrete vi velocity along the x-axis. Here this means |!|<1 and any exact
or numerical solutions must satisfy this constraint.

In Appendix 12, for brevity, we restrict our study to a ``homogeneous
(A) state'' with all ai , Aj equal respectively to a1 , A0 or equivalently
*a=_a=1. We first write explicitly the cubic ! polynomial with M and
* :=*c , _ :=_c as parameters. Second (proof given in Appendix 13,
Theorem 2), we prove analytically the existence of this upper bound |!|<1.
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In Appendix 14, Theorem 3, always for a ``homogeneous (A) state,''
we prove other constraints for ! depending on the *>1, <1, _>1, <1
subdomains, for instance where ! is necessarily positive or negative.
Numerically, always with a ``homogeneous'' (A) state, we have also found,
like for single gas models, intervals around 0 where ! cannot be present.
For M=2 we find 19�23�|!|<1 and we explain the origin of this lower
bound.

6. THE STRUCTURE OF THE SHOCK WAVE

As is well known, the Rankine�Hugoniot conditions are not enough to
solve the problem of shock structure and we must study the equations for
the non-conserved quantities. Here we make an ansatz that turns out to
be exact for the model under study, i.e., that the profile is given by a
hyperbolic tangent, or, following the previous approach of one of the
authors, (2, 3) that the shock structure is described by a function F=F(z)
such that:

dF�dz=#F(F&1), F(z)=[1+e#z]&1 (6.1)

We assume Fi , fi linear in F, substitute into three nonlinear equations:

fi=ai+biF(z), Fi=Ai+BiF(z), L j=1j
(6.2)

j=1, 2, l1+2l4=441

use the equation satisfied by fi , Fi and equate terms of zeroth, first and
second degree in F. We obtain, after some simplification, three equations

B0b3&B1b2

&!&MB1

=
B0b4&B2b1

&!+MB2

=
#
c

=(4a�c)
b3b2&b4b1

(&!+1) b1&2(!+1) b4

(6.3)

containing the parameter # (essentially the inverse of the shock thickness),
with !\M=!\2�M and 6 equations involving just the asymptotic states:

A0a3&A1a2=0, B0b3&B1b2+A0b3+B0a3&A1b2&B1 a2=0

A0a4&A2a1=0, B0b4&B2b1+A0b4+B0a4&A2b1&B2 a1=0 (6.4)

a3 a2&a4a1=0, b3 b2&b4b1+a3b2+a2b3&a4b1&a1a4=0

The equations Eqs. (5.2), Eqs. (6.3) do not contain the unknowns Ai , ai .
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This permits to find the values of the unknowns Bi and bi ignoring
Eqs. (6.4). If we let Bi =�i B0 , b i='iB0 and #=*� cB0 , B0 factors
throughout and remains as a free parameter. We rewrite the (5.2) relations:

!+M�2=!&M�1+!�2, (!+1) '2=(1&!) '1&!
(6.5)

(!+1) '4=(1&!) '3+!�2, '1+2'3=[4�1!&M+!]�(1&!)

giving a first relation between '1 and '3 while another (see Eq. (A2.1) in
Appendix 2) is obtained from the two first Eq. (6.3). From these 5 relations
we obtain all ' i and �2 as functions of ! and �1 . From one of the remain-
ing two relations Eq. (6.3) we determine # itself, or *� =#(cB0)&1 while the
last one becomes a compatibility between a, c, !, �1 . Physically, it is
reasonable to assign a, c and one of the !, �1 ; however, numerical evalua-
tions are easier if we assign !, �1 and one of a, c and deduce the other.

There remain three nonlinear algebraic equations containing Ai , ai

and three relations involving in addition Bi , bi , which are known. If we let
Ai =ai A0 , the A i and a i equations can be used to express a4 and the Ai

in terms of A0 and of the remaining ai . The equations containing both
types of constants can then be used to produce three different expressions
of B0 �A0 .

A particular class of solutions is obtained by letting a1 ='1 . Then
B0 =&A0 and b1=&a1 . If we assume a2 {'2 , then b3=&a3 , B1 =&A1

and B2 {&A2 , b2{ &a2 , b4{&a4 . Otherwise a2 ='2 , and b3{&a3 ,
B1 { &A1 , B2 {&A2 , b2=&a2 , b4{ &a4 .

If, on the other hand, we assume a1 {'1 , then we are led to solving
a cubic equation in a3 , with coefficients depending on a1 , '1 , '2 , '3 , '4 ,
�1 , �2 .

For any given set of values for the free parameters, we can solve for
a3 and then compute a2 and the other quantities (see Appendix 2 and
Appendix 3 for the characteristics). We retain only the solutions with
non-negative asymptotic states: ai , ai+bi and Ai , Ai+Bi . The monotonic
densities fi (z)=ai+b iF(z) # (ai , ai+bi ), F i= } } } are positive for z=
x&!t # (&�, +�) only if these constraints are satisfied. If only one is
positive then fi (or F i ) is positive, negative for some z intervals but this does
not mean that for t fixed, for instance t=0, we have fi>0 (or Fi>0) \x.

7. POSSIBLE OVERSHOOTS IN THE THERMAL ENERGIES

It is well-known that for a continuous velocity model, the thermal
energy per unit mass E has a not so marked overshoot(6) but in a mixture
the thermal energy E of the heavy gas can have a rather pronounced maxi-
mum.(7) Here we avoid using the term temperature, which cannot be given
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a clear and simple meaning outside an equilibrium state for a discrete
velocity gas.(8)

In the case of a single gas, E is essentially the ratio between the
pressure p and the mass density \. If W is the energy per unit volume and
D the number of dimensions (2 in our case), we have:

2E= pD�\=2W�\&(J�\)2 (7.1)

With the densities fi (z)=ai+biF(z), written in (6.2), the mass \(z), mass
flow J(z) and energy W(z) are linear in the function F which satisfies the
Riccati equation and is monotonic with z. We write \, J, W and the ``a''
and ``c'' asymptotic states: \a , \c=\a+\b , Ja , Jc=Ja+Jb . Wa , Wc=Wa

+Wb :

\=: fi=: a i+F : bi=\a+F\b

J=: :i fi=: ai :i+F : b i:i=Ja+FJb

W=: ei f i=: ai ei+F : biei=Wa+FWb

with :i for the projection of the velocity along the x-axis and ei for the
energy. More generally let us assume ``shock profiles'' solutions with F
monotonic and F # [0, 1]. We denote by a prime all derivatives with
respect to z: E$=dE�dz, \$. W$, J$, F $, we shall have extrema (overshoots
or undershoots) if and only if E$ vanishes. We have:

\3E$=\(W$\&\$W&JJ$)+J2\$=F $[\(\Wb&\bW )+J(J\b&\Jb)]

=F $[\(\aWb&\b Wa)+J(Ja \b&Jb\a)]

\3E$�F $=Q1=4a+F4b , 4a=\a(\a Wc&\cWa)+Ja(\cJa&\aJc)

4c=4a+4b=\c(\aWc&\cWa)+Jc(\cJa&\aJc) (7.2)

Theorem 4. E$ can vanish (or not), E is monotonic (or not),
depending on whether the asymptotic state values satisfy 4a4c�0 (or
<0).

For the proof we notice that in (7.2), Q1 is linear in F and F
monotonic with F # (0.1). 4a , 4c depending only on the asymptotic states
(A) and (C) , we have a criterion(3) based only on the knowledge of the
asymptotic states. For a monotonic behavior it is sufficient that one of
the two 4a , 4c be zero. This was important to distinguish the models with
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a ``homogeneous (densities associated to the same speed are equal)
asymptotic state'' or not. For instance for a ``homogeneous'' (C) state then
Jc=0 and 4c�\c=\aWc&\c Wa . For one speed models, like the
Broadwell models, it is clear that the right hand side is zero, 4c=0 and E
is monotonic. The same property can occur for other models, like the
9vi , 15vi } } } models, and other more general models with assumptions(3) on
the (A) state.

In the case of a mixture, things become a bit more complicated
because it is the energy per particle, proportional to p�n (where n is the
number density for the mixture) that one must consider in order to have
a proper equivalent of what is called temperature in the continuous case.
Then we consider:

2E=
pD
n

=2
W
n

&
J2

\n
(7.3)

2\2n2E$=2\2(W$n&Wn$)+J(J\n$+J\$n&2J$\n) (7.4)

2\2n2E$�F $=2\2(Wbna&Wa nb)+(Ja+JbF )[(Ja+Jb F )(\a+\bF ) nb

+(Ja+Jb F ) \b(na+nb F )&2Jb(\a+\bF )(na+nb F )]

=Q2=A� F 2+B� F+C�

where A� , B� , C� still depend only on the asymptotic values:

A� =2\2
b(Wb na&Wa nb)&J 2

b(\bna+\anb)+2\bnbJaJb

B� =4\a\b(Wbna&Wanb)&2J 2
b\ana+2J 2

a\bnb (7.5)

C� =2\2
a(Wb na&Wanb)+J 2

a(\bna+\anb)&2\a naJaJb

In the case of a single gas we can identify n with \ (apart from an inessen-
tial, constant factor) and the second degree polynomial factorizes into the
product of \ ({0) and the previous first degree polynomial: Q2=2\Q1 .

There are real roots for Q2(F ) if, and only if, B� 2�4A� C� .

Theorem 5. A sufficient condition for E$ nonmonotonic or for a
root between 0 and 1 is C� (A� +B� +C� )<0. (Proof: still F # (0, 1) in Q2 ,
(7.5)) We can find more complete conditions. If C� (A� +B� +C� )>0, there
might be two real roots between 0 and 1; a necessary condition for this is
&2A� 2<A� B� <0, to which A� C� >0 must be added to make it sufficient.
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8. A 13vi MODEL WHICH GENERALIZES THE 11vi ONE FOR
M=5

To the 11vi model for M=5 we add (see Fig. 1) two light species f7 , f8

with momenta 0, \1 and three collisions to the twelve (2.2):

44=a( f3 f8& f5 f7), 45=a( f4 f8& f6 f7), 46=a~ ( f1 f2& f7 f8)

We still find only five linear relations which are physical conservation laws.
We restrict our study to one-dimensional solutions with space coordinate
x. With a new independent density f8= f7 , one 44=45=0, 46{0, we
write the changes in the linear and nonlinear equations:

l7=46=a~ ( f1 f2& f 2
7), l1+2l4+l7=441 l1= } } } &46

l2= } } } &46 , l1+l2+2(l3+l4+l7)=0

2(L1&L2)+l1+2l3+l7=0

We still assume Fi , fi linear in F and compatible different scalar Riccati
equations (the same # in (6.1)). In (6.3) the two first relations for #�c are
the same, the third is modified, we add a fourth one and two new ones
in (6.4):

#
4a

=
b3 b2&b4b1

(&!+1) b1&2(!+1) b4&!b7

,
#
a~

=
b1 b2&b2

7

&!b7

a1 a2&a2
7=0, b1 b2&b2

7&2a7b7+a1b2+a2b1=0

To the same #=*� cB0 , Bi=�iB0 , bi='iB0 we add a new b7='7B0 and
write down the two changes in (6.5):

(!+1) '2+!('7+1)=(1&!) '1 , '1+2'3=
4�1(!&0.4)+!(1+'7)

1&!
(6$.5$)

In Appendix 4 we consider, for a, a~ , models where they are independent or
other, like hard-spheres, where they are linked by a~ - 5=2a.

9. NUMERICAL CALCULATIONS

We exhibit now and discuss some plots of the thermal energies for the
two species and for the mixture. We present shock waves in Figs. 2 for the
11vi model with always the Lax criterion and the shock inequalities
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satisfied. As was said in Section 2 these 11vi are physical for M>1: integer,
rational or non rational. Here in Figs. 2 we present shock waves for M=2,
3, 5 and 10, but results have been obtained for other integer values (not
reported because we have not found new features). Let us call !\� the
characteristics associated to the asymptotic states at \�. For the Lax
criterion we must satisfy !+�<!<!&� (!\� with the same index among
the characteristics associated to \�). If we define

v\�=J\� �\\�&!, w\�=J\� �\\�&!\�

for the mixtures, we must verify |v|> |w| (or |v|<|w| ) at the upstream
(downstream) state. We always find compressive shocks for the mixture
(mass and pressure increasing from the upstream to the downstream
states). For the three curves: mixture, heavy and light particles, we present
examples with three, two, one or zero overshoots and the Fi (z=0),
fi (z=0) values. Is it true that, for the mixture, the internal energy E still
always increases from the upstream to the downstream state?

We begin with the general solutions for the 11vi model. In Fig. 2a for
M=5, the three curves El , Eh , E for the light, heavy species and the
mixture have overshoots and they increase from the upstream to the
downstream state. In Fig. 2b for M=5, only the mixture and heavy species
have overshoots but, contrary to the heavy species, the mixture (also the
light species) decreases from the upstream to the downstream state. In
Fig. 2c for M=3, like in Fig. 2b we have overshoots for the mixture and
heavy species, but here the three curves are dominant at the upstream state
which means that E for the mixture decreases from the upstream to the
downstream state. In Fig. 2d for M=10, we find the most important over-
shoot for the heavy species and the three curves increase from they
upstream to the downstream state. For the general solutions, we can,
roughly speeking, say that the highest overshoot is always for the heavy
species and that it increases with M.

We go on with the particular solutions C0=C1=c1=c3=0 which in
fact depend on only two parameters !, �1 so that we can explore numeri-
cally all possibilities. We always find that the mixture increases from the
upstream to the downstream state; nevertheless we find two different cases
M{2 and M=2. For M>2 we do not find overshoots for the mixture but
the three curves are always dominant at the downstream state. In Fig. 2e
M=5 we present the three monotonic curves for one particular solution.
For M=2, in general we find the same features but there exist cases where
we find overshoots for the mixture and the heavy species curve, contrary to
the other two, is dominant upstream. In Fig. 2f we present such an example
with very small overshoots for the mixture and light species curves.
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File: 822J 250115 . By:XX . Date:24:02:00 . Time:13:51 LOP8M. V8.B. Page 01:01
Codes: 1115 Signs: 691 . Length: 44 pic 2 pts, 186 mm

Fig. 2. (a) First 11vx, M=5 General Solution, the three curves E, El , Eh have overshoots.
(b) Second 11vx, M=5 General Solution. Overshoots only for E, Eh and only Eh dominant
at the downstream state. (c) Third 11vx, M=3 General Solution. Overshoots only for E, Eh

with the three curves dominant at the upstream. (d) Fourth 11vx, M=10 General Solution.
Very important overshoot for E and the three curves are dominant at the downstream.
(e) 11vx, M=5 Particular Solution: C0=C1=c1=c3=0. The three curves are monotonic.
(f ) 11vx, M=2 Particular Solution C0=C1=c1=c3=0. Overshoot only for E. El , E are
(contrary to to Eh) dominant at the downstream.
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File: 822J 250116 . By:XX . Date:24:02:00 . Time:13:51 LOP8M. V8.B. Page 01:01
Codes: 432 Signs: 43 . Length: 44 pic 2 pts, 186 mm

Fig. 2. (Continued )

130 Cercignani and Cornille



File: 822J 250117 . By:XX . Date:24:02:00 . Time:13:52 LOP8M. V8.B. Page 01:01
Codes: 456 Signs: 67 . Length: 44 pic 2 pts, 186 mm

Fig. 2. (Continued )
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File: 822J 250118 . By:XX . Date:24:02:00 . Time:13:52 LOP8M. V8.B. Page 01:01
Codes: 771 Signs: 357 . Length: 44 pic 2 pts, 186 mm

Fig. 3. (a) Fist 13vx, M=5 General Solution with overshoots (small for E, El). (b) Second
13vx, M=5 General Solution with hard-spheres. The three curves are monotonic with Eh , El

(contrary to E ) dominant at the upstream. (c) 13vx, M=5 Particular Solution: c1=c3=c7=
C0=C1=0. The three curves are monotonic and dominant at the downstream.
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File: 822J 250119 . By:XX . Date:24:02:00 . Time:13:53 LOP8M. V8.B. Page 01:01
Codes: 1684 Signs: 1071 . Length: 44 pic 2 pts, 186 mm

Fig. 3. (Continued )

Now we present for the 13vi , M=5 model three figures with the curves
dominant downstream (except in Fig. 3b with light and heavy curves domi-
nant upstream). In Fig. 3a the three curves have overshoots (very small
for the light species and mixture), in Fig. 3b (hard-spheres) and Fig. 3c
(a particular solution), they are monotonic.

Finally, for the solutions with a ``homogeneous'' (A) state (Ai=A0 ,
ai=a1), we present results for the 11vi model with M=5 and M=10. For
the thermal energy, we always find monotonic curves for the mixture, small
overshoots for either the light species or both species.

APPENDIX 0. ONLY FIVE PHYSICAL CONSERVATION
RELATIONS

Theorem 1. There are only 5 physical conservation laws for the
11vi model. We define #� :=(# only in). In the following proofs for the 12
collision terms in li , Li (2.2)�(2.3) we can retain only 1i , i=1, 2, 3, 4, 6, 4j ,
j=1, 2.

(1) [li] set: First, 12 #� l1 , l4 and is eliminated in l1, 4 ; 14 #� l1, 4 , l6 and
disappears in l1, 4, 6=24+

1, 2 . Second, 11 is eliminated in l2, 3 and 13 in
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l2, 3, 5=&24+
1, 2=&l1, 4, 6 leading finally to the only light mass relation

�6
1 l i=Ml=0.

(2) [Li] set: 11 #� L0 , L1 is eliminated in L0, 1 , 12 in L0, 1, 2 and 13 in
L0, 1, 2, 3=&L4 leading to the only heavy mass relation �4

0 Li=Mh=0.
(3) set [li , Li] except L0 . First 11 #� L1 , l2 , l3 and is eliminated in

X1=L1+l3+al2, 3 with a arbitrary. Second 13 #� X1 , L3 , l5 and is
eliminated in X2=L1+l3+a(l2, 3&L3)+b(l5+L3) with b arbitrary.
Third, 16 #� X2 , L2 , L4 and is eliminated in X3=X2&(a+1&c&b) L4+
cL2 with c arbitrary. Fourth, 12 #� X3 , l3 , l4 and is eliminated in X4=X3+
cl4+dl3, 4 with d arbitrary. Finally 14 #� X4 , l6 and disappears in X5=
X4+l6(c+b&1&a):

X5=L&
1, 4+l&

3, 6+a(l+
2, 3&l6&L+

3, 4)+c(L+
2, 4+l+

4, 6)+dl1, 4, 6+bX

X=L+
3, 4+l+

5, 6=0 � X5=4+
1, 2(&1&2a+c+2d )

With c=1+2a&2d we rewrite X5=Y+aZ&d(X+Z&Ml)=0,

Y=L+
1, 2+l+

3, 4=0, Z=L&
4, 3+2L2+l2, 3, 4+l+

4, 6=0

Y&Z=(Jx&Ml)�2, Y&X=Jy , Y+X=(2E&Ml)(M&1)�4

and see that X, Y, Z are linear combinations of E, Ml , Jx , Jy .

APPENDIX 1. A DISCUSSION OF THE
RANKINE�HUGONIOT CONDITIONS

A11. We define !\M=!\2�M and the conservation equations can
be written in terms of (A): (*a , _a , a1 , A0 ), (C): (*c , _c , c1 , C0 ):

A0 [!+2!&M_a *&1
a +2!+M *a_a]

=C0 [!+2!&M _c*&1
c +2!+M*c_c]

!A0 +(!&1) a1+(!+1) *aa1

=!C0 +(!&1) c1+(!+1) *cc1

(!&1) _aa1+(!+1) *a_a a1&!A0 �2

=(!&1) _cc1+(!+1) *c_cc1&!C0�2

2!&M _a *&1
a A0 &2!&M *a_A0 +(!&1) a1(2_a+1)

=2!&M_c*&1
c C0 &2!+M*c _cC0 +(!&1) c1(2_c+1) (A1.1)
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The first equation and a suitable combination of the next two give

R :=
A0

C0

=
!+2!&M_c*&1

c +2!+M*c_c

!+2!&M _a *&1
a +2!+M*a_a

(A1.2)

r :=
a1

c1

=
(2_c+1)[(!&1)+(!+1) *c]
(2_a+1)[(!&1)+(!+1) *a]

(A1.3)

With R, r defined in (A1.3) we get from the first and fourth (A1.2):

C0

c1

=
(!&1)(1&r)+(!+1)(*c&*ar)

!(R&1)
(A1.4)

C0

c1

=
(!&1)[2(_c&_ar)+(1&r)]

(R_a*&1
a &_c*&1

c ) 2!&M&2!+M(R*a_a&*c_c)

A12. We assume (A) homogeneous: *a=_a=1, define *=*c>0,
_=_c>0 and rewrite both R>0, r>0 and the two C0 �c1>0:

R=
![1+2_(*+1�*)]+(4�M ) _(*&1�*)

5!
, r=(2_+1)

!(*+1)+*&1
6!

:\=(1&_)(*\1)�3, :=(2�M ) _(*&1�*), ;=&2+_(*+1�*)

$2=5M:�2, $1=2;�M, $0=&(8�M ) :, #=(2_+1)(1&*)�2

Y(!)=$2!2+$1!+$0=(2�M ) X(!)+:5M!&M!+M �2 (A1.5)

X(!)=!;+:, C0 �c1=5
(!:++:&)

X(!)
, C0 �c1=5

(!2&1) #
2Y(!)

(A1.6)

We deduce a cubic polynomial �3
i=0 Xi! i=0 with X3=2$2:+&;# and

X0=2$0 :&+:#, X1=2$1:++2$0:++#;, X2=2$2:&+2$1:+&#:. We
define C, CC as the signs of the first and second C0�c1 (A1.6) expressions
which must be positive and for any Z quantity we write ``Z '' for the sign.
For instance ``*&1''=``:,'' ``!(*+1)+*&1''=``! '' from r>0,

C=``!(1&_) X(!),'' CC=``(!2&1)(1&*) Y(!)'' (A1.7)

A.13. Theorem 2. For M�2 and a ``homogeneous'' state
*a=_a=1, then |!|>1 violates positivity. For the proofs we have eight
different cases:

First: (1), (2) *Y1, _y1, !>1 � :Y0, C=&�``X(!)'' � X(!)Y0,
(A1.5) gives Y(!)Y0 � CC=\``Y ''<0. (3), (4) *y1, _y1, !< &1 �
:y0, C=\``X(!)'' � Xy0, (A.15) gives Y(!)y0 � CC=�``Y ''<0.
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Second with Lemma 1: If _>1 then ;>0. Proof: *>0 � *+1�*>
2 � ;=&2+_(*+1�*)>2(_&1)>0. (5), (6): *y1, _>1, !>1, <&1,
�:y0, ;>0 � X(!)y0. But C=�``X(!)''<0.

Third: (7), (8) *y1, _<1, !=�(1+'), '�0 � :y0 and CC=
�``Y(!)'' � Y(!)Y0. This contradicts the following Lemmas 2�3:

Lemma 2: With (7), then Y(&1)>0 and Y(&1&')>0.
Proof: MY(&1)�2=2(1&_�*)+_(*&1�*)(M&2)(5�2+4�M )>0,

Y(!)=Y(&1)+(2'�M )[2(1&_�*)+_(*&1�*)(&1+5M(1+'�2)]>0.
Lemma 3: With (8), then Y(1)<0, Y(1+')<0:
Proof: MY(1)�2=2(_&1)+_(1�*&*)(2&M )(5�2+4�M )<0, Y(!)

=Y(1)+(2'�M )[2(_*&1)+_(*&1�*)(5M&1)]+5:M'2�2<0.

A.14. Theorem 3. For M=2, (A) ``homogeneous,'' |!|<1 and
(1), (2): *Y1, _y1, !<0, (3), (4): *y1, _y1, !>0, then positivity is
violated.

Proofs: (1), (2): CC=�``Y '', YY0, C=\X, Xy0, :Y0 and (A.1.5)
�Yy0. (3), (4): CC=\``Y '', Yy0, C=�X, XY0, :Y0 and (A.1.5)
�YY0.

Numerically, from the cubic ! polynomial and M=2, we have found
19�23�|!|<1 and we give the origin of the lower bound:

lim
* � �, 0<_<1

C0

c1

=
5(1&_)

3_
=

5(2_+1)(1&!)
4_(5!&4)

� !=
19&10_
23&14_

�19�23

lim
* � 0, 0<_<1

C0

c1

=
5(1&_)

3_
=

5(2_+1)(1+!)
4_(5!+4)

� !=
10_&19
23&14_

�&19�23

APPENDIX 2. EXACT SOLUTIONS FOR THE 11vi MODEL

We complete the discussion of the shock structure with !\M=
!\2�M, Bi =�i B0 , b i='iB0 , #=*cB0 , where B0 , �1 and ! are param-
eters. Equation (6.5) gives both �2 , '2 and '4 in terms of '1 , '3 , �1 ! and
a first '1 , '3 linear relation while the first two Eq. (6.3) equations gives a
second:

'1 _ 1
!+M

&
1&!

!&M(1+!)&+'3 _ 1
�1 !&M

&
1&!

!+M(1+!)&
=

!
1+! _

1
!+2�1!&M

&
1

!&M& (A2.1)
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Thus '1 and '3 , and, as a consequence, '2 and '4 and �2 are determined.
One of the two (6.3) relations containing # can be used to determine # or *� :

*� =#(cB0)&1=(�1'2&'3)��1!&M=(�2 '1&'4)��2!+M (A2.2)

There is still a compatibility relation between a, c, !, �1 :

4a�*� c=[(1&!) '1&2(1+!) '4]�('3'2&'1'4) (A2.3)

We define ai =aiA0 , then the A i , ai equations give a4 and the Ai in terms
of A0 , a� i{4 while the Ai , a i , Bi , bi equations give three B0�A0 expressions.

a� 3'2 �a� 2+�1a� 2&'3&a� 3

'3&�1'2

=
a� 2a� 3('1&a1)�a� 2

1+�2a� 1&'4

'4&�2'1

=
a� 2a� 3'1 �a� 1+a� 1 '4&a� 3'2&a� 2'3

'3 '2&'1'4

=B0 �A0

(A2.4)

We assume a1 {'1 (a1 ='1 discussed in the main text) leading to a cubic
equation �3

i=0 Ai a3
i=0. From a� 1 , a� 3 , A0 known we get all Ai , ai , Bi , b i .

We write (A2.4) for a ``homogeneous'' (A) state Ai=A0 , a i=a1 ,

'2&'3+(a1 �A0)(�1&1)
'3&�1'2

=
('1&'4)+(a1�A0)(�2&1)

'4&�2'1

=(a1�A0)('1+'4&'2&'3)�('3'2&'1 '4)=B0 �A0 (A2.5)

deduce a1 �A0 , B0 �A0 and a compatibility condition between ! and �1 .
Assuming A0 as given, we deduce a1 , B0 and all parameters are known.

APPENDIX 3. THE IDEAL FLUID LIMIT

An interesting problem is the investigation of the ideal fluid limit for
our model. This is given by the conservation equation in which the
densities are local equilibrium states. We introduce f1=+ and F0=& and
deduce:

f2=*+, f3=_+, f4=*_+, F1 =_*&1&, F2 =*_& (A3.1)
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with *, +, &, _ functions of x, t. We write the conservation equations:

�t(&+2_*&1&+2*_&)+
4
M

�x(_*&1&&*_&)=0

�t(&+++*+)+�x(+&*+)=0, �t \_++�_+&
&
2++�x(_+&*_+)=0

�t[2(_*&1&&*_&+_+)++]+�x _ 4
M

(_*&1&+*_&)+2_+++&=0

(A3.2)

For these equations the shock wave solutions are generalized (or weak)
solutions with discontinuities. Other disturbances travel along the character-
istic lines and involve at most discontinuities in the first order derivatives.

For the characteristic velocities, we first differentiate the various terms
in the above equations, define *\ :=*&1\* and obtain:

(1+2*&1_+2*_) �t &+2*+&�t _&2&_(*&2&1) �t *

+
4
M

*&(_�x&+&�x_]&
4
M

&_(*&2+1) �x*=0

�t &+(1+*) �t+++�t*+(1&*) �x+&+�x*=0

(1+*)[+�t_+_�t +]+_+�t*&
1
2

�t&+(1&*)[_�x+++�x_]&+_�x*=0

2_*& �t &+[2*&&++] �t_&2&_(*&2+1) �t*+(1+2_) �t ++(4�M )

_[(*+&+2+) �x_+*+_�x&&&_(*&2&1) �x*]+(1+2_) �x+=0

(A3.3)

For a travelling wave with z=x&!t, we obtain a homogeneous system for
the derivatives �z&, �z+, �z*, �z _ with vanishing determinant.

Another method is to linearize about the (A) state, Fi&Ai+Xi ,
fi &ai+x i , leading to a quartic polynomial for the characteristics

&!�2 &!&M &!+M 0 0 0 0
&! 0 0 &!+1 &!&1 0 0
!�2 0 0 0 0 &!+1 &!&1

0= } 0 &2!&M 2!+M &!+1 0 &2!+2 0 }&a3 a2 0 0 A1 &A0 0
&a4 0 a1 A2 0 0 &A0

0 0 0 a4 &a3 &a2 a1
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The characteristics for the class with only c2{0, c4{0, C2{0 at the (C)
state are: !=!(C)=&1, &1, &2�M, !+=[c2c4+c2

4]�[C2c2+c2c4+2c2
4].

APPENDIX 4. EXACT SOLUTIONS FOR THE 13vi MODEL

Firstly, from the first and last (6.5), the two (6$.5$) and (A2.2) relations
we have a linear system for 'i , i=1, 2, 3, 4 with �1 , '7 , ! as parameters.
From, (A2.4), the three A0 �B0 with a� 1 arbitrary, give a cubic a� 3 polyno-
mial, then a� 2 and B0 from A0 given. It remains a� 7 deduced from another
B0 �A0 ; '7 from a compatibility condition a� 2

7=a� 1a� 2 and a, a~ :

B0 �A0=[2a� 7'7&a� 1 '2&a� 2'1]�['1'2&'2
7] (A4.1)

4a
*� c

=
(1&!) '1&2(1+!) '4&!'7

'3 '2&'1 '4

,
a~
*� c

=
!'7

'2
7&'1'2

(A4.2)

Secondly for hard-spheres 2a=a~ - 5, (A4.1) gives a new 'i relation:

('2
7&'1'2)['1(1&!)&2'4(1+!)&'7 !]=2 - 5 '7!['3 '2&'1'4]

(A4.3)

leading (with the four above linear 'i relations) to a cubic '7 polynomial,
still one compatibility condition a� 2

7=a� 1 a� 2 and (A4.3) giving either a or a~ .
Thirdly for the particular solutions with a� 1='1 , A0�B0=&1 we get

two classes: (i): a� 2='2 , a� 7='7 , c1=c2=c7=C0=0; (ii): a� 3='3 , a� 7='7 ,
�1=a� 3 �a� 2=A1 �A0 , c1=c3=c7=C0=C1=0 with characteristic values at
the (C) state: !(C) : &1, &1, &2�5, 0.

Finally we write the general quartic polynomial for the characteristics.

0=

&!�2 &!+0.4 &!&0.4 0 0 0 0 0
&! 0 0 &!+1 &!&1 0 0 &2!
!�2 0 0 0 0 &!+1 &!&1
0 &2!+0.8 2!+0.8 &!+1 0 &2!+2 0 &!

&a3 a2 0 0 A1 &A0 0 0
&a4 0 a1 A2 0 0 &A0 0

0 0 0 a4 &a3 &a2 a1 0
0 0 0 a2 &a1 0 0 2a7
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